The pendulum-slosh problem: simulation using a time-dependent conformal mapping

نویسنده

  • H. Alemi Ardakani
چکیده

Suspending a rectangular vessel which is partially filled with fluid from a single rigid pivoting pole produces an interesting theoretical model with which to investigate the dynamic coupling between fluid motion and vessel rotation. The exact equations for this coupled system are derived with the fluid motion governed by the Euler equations relative to the moving frame of the vessel, and the vessel motion governed by a modified forced pendulum equation. The nonlinear equations of motion for the fluid are solved numerically via a timedependent conformal mapping, which maps the physical domain to a rectangle in the computational domain with a time dependent conformal modulus. The numerical scheme expresses the implicit free-surface boundary conditions as two explicit partial differential equations which are then solved via a pseudospectral method in space. The coupled system is integrated in time with a fourth-order Runge-Kutta method. The starting point for the simulations is the linear neutral stability contour discovered by Turner, Alemi Ardakani & Bridges (2014, J. Fluid Struct. 52, 166-180). Near the contour the nonlinear results confirm the instability boundary, and far from the neutral curve (parameterised by longer pole lengths) nonlinearity is found to significantly alter the vessel response. Results are also presented for an initial condition given by a superposition of two sloshing modes with approximately the same frequency from the linear characteristic equation. In this case the fluid initial conditions generate large nonlinear vessel motions, which may have implications for systems designed to oscillate in a confined space or on the slosh-induced-rolling of a ship.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Ideal External and Internal Flows with Arbitrary Boundaries Using Schwarz Christoffel Transformation

The flow field, velocity and pressure coefficient distribution of some 2-D ideal flows are presented. Conformal mapping is used to simulate two-dimensional ideal flow for a variety of complex internal and external configurations, based on the numerical integration of Schwarz-Christoffel transformation. The advantages of this method are simplicity and high accuracy. The method presented in this ...

متن کامل

Discrete Output Feedback Control of a Class of Underactuated Systems using Sliding Modes

This paper presents a discrete sliding mode observer (DSMO) for state estimation of a class of a second order underactuated system. The estimated states are used to implement the discrete sliding mode control (DSMC). Modified Bartoszewicz’s reaching law is used to synthesize a DSMC. A partially filled liquid container motion coupled with liquid slosh constitutes a class of second order underact...

متن کامل

Conical Conformal Antenna Design using the CPM Method for MIMO Systems

Abstract- In this article, the design of conformal antennas has been discussed using the characteristic modes (CM) method. For this purpose, the vector wave function(VWF) has been utilized to achieve a two-dimensional mapping of the conformal antenna. In designing and analyzing of cone-shaped antennas applicable for multi-input multi-output (MIMO) systems, the most important goal is to achieve ...

متن کامل

MINIMUM TIME SWING UP AND STABILIZATION OF ROTARY INVERTED PENDULUM USING PULSE STEP CONTROL

This paper proposes an approach for the minimum time swing upof a rotary inverted pendulum. Our rotary inverted pendulum is supported bya pivot arm. The pivot arm rotates in a horizontal plane by means of a servomotor. The opposite end of the arm is instrumented with a joint whose axisis along the radial direction of the motor. A pendulum is suspended at thejoint. The task is to design a contro...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015